Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasoocclusions in sickle cell disease.

نویسندگان

  • Stéphane M Camus
  • João A De Moraes
  • Philippe Bonnin
  • Paul Abbyad
  • Sylvain Le Jeune
  • François Lionnet
  • Laurent Loufrani
  • Linda Grimaud
  • Jean-Christophe Lambry
  • Dominique Charue
  • Laurent Kiger
  • Jean-Marie Renard
  • Claire Larroque
  • Hervé Le Clésiau
  • Alain Tedgui
  • Patrick Bruneval
  • Christina Barja-Fidalgo
  • Antigoni Alexandrou
  • Pierre-Louis Tharaux
  • Chantal M Boulanger
  • Olivier P Blanc-Brude
چکیده

Intravascular hemolysis describes the relocalization of heme and hemoglobin (Hb) from erythrocytes to plasma. We investigated the concept that erythrocyte membrane microparticles (MPs) concentrate cell-free heme in human hemolytic diseases, and that heme-laden MPs have a physiopathological impact. Up to one-third of cell-free heme in plasma from 47 patients with sickle cell disease (SCD) was sequestered in circulating MPs. Erythrocyte vesiculation in vitro produced MPs loaded with heme. In silico analysis predicted that externalized phosphatidylserine (PS) in MPs may associate with and help retain heme at the cell surface. Immunohistology identified Hb-laden MPs adherent to capillary endothelium in kidney biopsies from hyperalbuminuric SCD patients. In addition, heme-laden erythrocyte MPs adhered and transferred heme to cultured endothelial cells, inducing oxidative stress and apoptosis. In transgenic SAD mice, infusion of heme-laden MPs triggered rapid vasoocclusions in kidneys and compromised microvascular dilation ex vivo. These vascular effects were largely blocked by heme-scavenging hemopexin and by the PS antagonist annexin-a5, in vitro and in vivo. Adversely remodeled MPs carrying heme may thus be a source of oxidant stress for the endothelium, linking hemolysis to vascular injury. This pathway might provide new targets for the therapeutic preservation of vascular function in SCD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxidative stress and induction of heme oxygenase-1 in the kidney in sickle cell disease.

Chronic nephropathy is a recognized complication of sickle cell disease. Using a transgenic sickle mouse, we examined whether oxidative stress occurs in the sickle kidney, the origins and functional significance of such oxidant stress, and the expression of the oxidant-inducible, potentially protective gene, heme oxygenase-1 (HO-1); we also examined the expression of HO-1 in the kidney and in c...

متن کامل

Erythrocyte microparticles can induce kidney vaso-occlusions in a murine model of sickle cell disease.

Patients with sickle cell disease suffer from painful crises associated with disseminated vaso-occlusions, increased circulating erythrocyte microparticles (MPs), and thrombospondin-1 (TSP1). MPs are submicron membrane vesicles shed by compromised or activated cells. We hypothesized that TSP1 mediates MP shedding and participates in vaso-occlusions. We injected TSP1 to transgenic SAD mice with ...

متن کامل

Inhibitory effect of the interferon-beta on the release of endothelial cell derived microparticles in patients with multiple sclerosis

Abstract Introduction: Increased levels of microparticles (MPs) have been reported in many autoimmune diseases such as multiple sclerosis (MS). In MS, endothelial cells release MPs from their membranes following the activation of lymphocytes and the production of inflammatory cytokines. The aim of this study was to investigate the inhibitory effect of interferon beta (INFβ) on the release of en...

متن کامل

RED CELLS Blood mononuclear cell gene expression profiles characterize the oxidant, hemolytic, and inflammatory stress of sickle cell disease

In sickle cell disease, deoxygenation of intra-erythrocytic hemoglobin S leads to hemoglobin polymerization, erythrocyte rigidity, hemolysis, and microvascular occlusion. Ischemia-reperfusion injury, plasma hemoglobin-mediated nitric oxide consumption, and free radical generation activate systemic inflammatory responses. To characterize the role of circulating leukocytes in sickle cell pathogen...

متن کامل

Circulating erythrocyte-derived microparticles are associated with coagulation activation in sickle cell disease.

BACKGROUND Sickle cell disease is characterized by a hypercoagulable state as a result of multiple factors, including chronic hemolysis and circulating cell-derived microparticles. There is still no consensus on the cellular origin of such microparticles and the exact mechanism by which they may enhance coagulation activation in sickle cell disease. DESIGN AND METHODS In the present study, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 125 24  شماره 

صفحات  -

تاریخ انتشار 2015